【常见函数的求导公式】在微积分的学习中,求导是基础且重要的内容。掌握常见函数的求导公式,不仅有助于解题效率的提升,还能加深对导数概念的理解。以下是对一些常见函数的导数进行总结,并以表格形式呈现,便于查阅和记忆。
一、基本初等函数的导数
1. 常数函数
若 $ f(x) = C $(其中 $ C $ 为常数),则其导数为:
$$
f'(x) = 0
$$
2. 幂函数
若 $ f(x) = x^n $($ n $ 为实数),则其导数为:
$$
f'(x) = nx^{n-1}
$$
3. 指数函数
若 $ f(x) = a^x $($ a > 0, a \neq 1 $),则其导数为:
$$
f'(x) = a^x \ln a
$$
特别地,当 $ a = e $ 时,有:
$$
f'(x) = e^x
$$
4. 对数函数
若 $ f(x) = \log_a x $($ a > 0, a \neq 1 $),则其导数为:
$$
f'(x) = \frac{1}{x \ln a}
$$
当 $ a = e $ 时,即自然对数函数 $ f(x) = \ln x $,导数为:
$$
f'(x) = \frac{1}{x}
$$
5. 三角函数
- $ f(x) = \sin x $,导数为:
$$
f'(x) = \cos x
$$
- $ f(x) = \cos x $,导数为:
$$
f'(x) = -\sin x
$$
- $ f(x) = \tan x $,导数为:
$$
f'(x) = \sec^2 x
$$
- $ f(x) = \cot x $,导数为:
$$
f'(x) = -\csc^2 x
$$
6. 反三角函数
- $ f(x) = \arcsin x $,导数为:
$$
f'(x) = \frac{1}{\sqrt{1 - x^2}}
$$
- $ f(x) = \arccos x $,导数为:
$$
f'(x) = -\frac{1}{\sqrt{1 - x^2}}
$$
- $ f(x) = \arctan x $,导数为:
$$
f'(x) = \frac{1}{1 + x^2}
$$
二、导数的基本运算法则
1. 加减法法则
若 $ f(x) = u(x) \pm v(x) $,则:
$$
f'(x) = u'(x) \pm v'(x)
$$
2. 乘法法则(莱布尼茨法则)
若 $ f(x) = u(x) \cdot v(x) $,则:
$$
f'(x) = u'(x)v(x) + u(x)v'(x)
$$
3. 除法法则
若 $ f(x) = \frac{u(x)}{v(x)} $,则:
$$
f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}
$$
4. 链式法则
若 $ f(x) = g(h(x)) $,则:
$$
f'(x) = g'(h(x)) \cdot h'(x)
$$
三、常见函数的导数汇总表
函数表达式 | 导数 |
$ f(x) = C $ | $ 0 $ |
$ f(x) = x^n $ | $ nx^{n-1} $ |
$ f(x) = a^x $ | $ a^x \ln a $ |
$ f(x) = e^x $ | $ e^x $ |
$ f(x) = \log_a x $ | $ \frac{1}{x \ln a} $ |
$ f(x) = \ln x $ | $ \frac{1}{x} $ |
$ f(x) = \sin x $ | $ \cos x $ |
$ f(x) = \cos x $ | $ -\sin x $ |
$ f(x) = \tan x $ | $ \sec^2 x $ |
$ f(x) = \cot x $ | $ -\csc^2 x $ |
$ f(x) = \arcsin x $ | $ \frac{1}{\sqrt{1 - x^2}} $ |
$ f(x) = \arccos x $ | $ -\frac{1}{\sqrt{1 - x^2}} $ |
$ f(x) = \arctan x $ | $ \frac{1}{1 + x^2} $ |
通过熟悉这些常见的导数公式和运算规则,可以更高效地解决各类微分问题。建议在学习过程中多做练习,逐步提高对导数应用的熟练程度。